Centre for Energy and Resource Technology

Process Conditions in Oxy-fuel Combustion

The Coal Research Forum 24th annual meeting

Nelia Jurado Hamid G Darabkhani John E Oakey

Cranfield University 10th April 2013 http://www.cranfield.ac.uk

Multi- Fuel Combustion Rig at CERT: MAIN FEATURES

Diagram of 150kWth Multi-fuel Combustor at CERT

Operational Conditions

Coal (Daw Mill) 100% (w/w) Biomass (Cereal Co-Product) 100% (w/w) Blends of Parent Fuels 50% Daw Mill-50% CCP

- Recycled flue gas: 52%(v/v)
- Oxygen flow rate:

Primary stream (Fuel carrier) <21%(v/v) Secondary stream <28%(v/v)

- Flue gas conditioning: Particle removal
- Pressure: Below atmospheric but as close as possible to it (minimise air ingress)

	CERT (100% Coal)		Steinmetz <i>et</i> <i>al.</i> , (2011)		Haykiri- et al.,(2	Acma 2010)	Zhang <i>et al.</i> , (2011)		
	Wet basis	Dry basis	Wet basis (10% air ingress)	Dry basis	Wet basis	Dry basis	Wet basis	Dry basis	
(%)	56.7	74	62.4		55-65	96	68	90	
(%)	23		4.2				20		
%)	2		3						
%)	22		29.1						

Experimental Results: GAS COMPOSITION COMPARISON Minor Species

SO₂ decreases with more CCP into the fuel mixture Possible reasons: $\sqrt{SO_2 \rightarrow SO_3}$

- ✓ More S is retained in ash deposits
- ✓ Bad performance of FTIR analyser (High H_2O and CH_4)
- CO higher for CCP case \rightarrow Possible reason: Not enough O₂ fed
- HCI and NO: decrease with CCP content

NO₂ and N₂O: no variation with type of fuel

Experimental Results: TEMPERATURES COMPARISON

Maximum Temperatures

✓ Daw Mill 100% : 1100°C
✓ Daw Mill 50% - CCP 50% : 993°C
✓ CCP 100%: 848°C

Experimental Results: ASH DEPOSITS COMPARISON

- More fibrous and porous texture of the deposits generated by 100%CCP
- Larger size of deposits particles from 100%CCP

Ash Deposit Probe Daw Mill 50%-CCP 50%

Ash Deposit Probe CCP 100% 100% CCP BIOMASS

50%DAW MILL COAL-50% CCP BIOMASS

Electron Image 1

100% DAW MILL COAL

Electron Image 1

Electron Image 1

SEM images of the top deposits

Experimental Results: ASH DEPOSITS COMPARISON

Corrosion Problems

associated with the

use of biomass

- S: higher retention in deposits in 100% CCP case
- K: higher content in the 100% CCP case

K₂SO₄

FORMATION

	SiO2	AI2O3	Fe2O3	TiO2	CaO	MgO	Na2O	K2O	Mn304	P2O5	SO3	BaO
DAW MILL	36.8	23.9	11.2	1.1	12	2.5	1.5	0.5	0.4	-	-	-
ССР	44.36	2.79	2.47	0.12	7.78	3.96	0.36	24.72	0.1	12.04	-	0.05

Previous ash Previous ash analysis supplied by EON

Next modifications

New measurements:

- ✓ Acid dew point (CAPCIS Probe)
- SO₃ (Controlled Condensation Method)
- ✓ Heat transfer
- ✓ Percentage of burnout

New flue gas conditioning:

✓ Water and SOx removal

Simulations using Aspen Plus®

KINETIC MODEL

	STAGE 1 Air-firing case	STAGE 2 Oxy-firing case with wet recirculation, heat loss and air leakage	STAGE 3 Oxy-firing case with partial condensation in RFG, heat loss and air leakage	STAGE 4 Oxy-firing case with dry recirculation, heat loss, air leakage	STAGE 5 Air-firing case with power generation unit	STAGE 6 Oxy-firing case with dry recirculation, heat loss, air leakage, ASU and power generation unit
AIR/ OXY-FIRING	Air -firing	Oxy -firing	Oxy -firing	Oxy -firing	Air -firing	Oxy -firing
RFG (%)		55, 60, 65, 70	55, 60, 65, 70	55, 60, 65		55, 60, 65
O ₂ Exc (%) (v/v)	21	0,5,10	0,5	0,5	21	0,5
T RFG (°C)		130	75,90	130		130-200
Air Leakage (% of Total Gas fed)		1.7	0, 2, 10, 18	10		10
Fuel	Coal	Coal (El Cerrejon, Daw Mill), Biomass(Cereal Co-Product, Miscanthus), blends of coal and biomass (75/25; 50/50; 25/75)	Daw Mill coal, Cereal Co-Product biomass, blends of coal and biomass (75/25; 50/50; 25/75)	El Cerrejon coal, Cereal Co-Product biomass, blends of coal and biomass (75/25; 50/50; 25/75)	Coal	El Cerrejon coal, Cereal Co-Product biomass, blends of coal and biomass (75/25; 50/50; 25/75)
RFG Purification	Particle removal	Particle removal	Particle removal	Particle removal, acid species and water vapour condensation	Particle removal, acid species and water vapour condensation	Particle removal, acid species and water vapour condensation

Simulations using Aspen Plus®: DRY RECYCLE FLUE GAS

Box- plot of the Rate-based Model with Dry Recycle Flue Gas (Stage 4)

Interface of the rate-based model with dry RFG in Aspen Plus (Stage 4)

Simulations: DRY RECYCLE FLUE GAS EFFECT ON THE EXHAUST

- CO₂ increases 20% (v/v) as consequence of implementation of the condenser
- H₂O decreases at the same proportion to the increase of CO₂

MINOR SPECIES-Exhaust Gas

MAIN SPECIES- Exhaust Gas

- All minor species drop to near zero content in the exhaust gas, in the cases where the condenser was used
- There is a decrease of NO and NO₂ levels, at higher % RFG, due to dilution
- Not good prediction for HCl, NO and NO₂
- Condensates H₂O H₂SO₄ HNO₃ HCI composition: (% v/v) (% v/v) (% v/v) (% v/v) **OXY-FIRING 60%** 90.96 0.72 8.29 0.02 RFG 0% O₂ exc **OXY-FIRING 60%** 89.13 0.71 10.13 0.02 RFG 5% O₂ exc **AIR-FIRING** 89.18 0.73 10.05 0.02

Simulations: DRY RECYCLE FLUE GAS EFFECT ON THE COMBUSTION PRODUCTS

- Max. CO₂ at the exit of oxy-combustor 66.6%(v/v) versus 14.6 % (v/v) reached for air-firing
- No significant changes in H₂O content at different % RFG, between 10 and 12.5% (v/v)

MINOR SPECIES-COMBUSTION PRODUCTS

H2O out 0%exc O2 ---- O2 out 5%exc O2 - - H2O out 5%exc O2 •••ו• O2 out 21%exc O2 (AF) •••ו•• H2O out 21%exc O2(AF) 70.00 60.00 50.00 Vol 40.00 % 30.00 20.00 10.00 _____ 0.00 55%RFG 60%RFG 65%RFG

MAIN SPECIES-COMBUSTION PRODUCTS

Comparison with air-firing:

✓ SO ₂ :	900	VS	450 ppmv
✓ HCĪ:	24	vs	13 ppmv
✓ NO:	8000	VS	3500 ppmv
✓ NO ₂ :	5000	VS	2500 ppmv

In general, oxy-firing doubles minor species concentration versus air-firing cases

 Minimal effect on the minor species when changing the % RFG and the excess of O₂ fed (exemption NO content)

Summary

- Experimental results showed are in the range proposed by other researchers. Max.
 concentration of CO₂ reached in experiments: 56.7%(v/v) (Wet basis)
- ***** The air ingress has been deduced to be of 10% of the total flue gas fed to the combustor
- Ash deposits analysis has shown their high corrosion potential in the 100% CCP case due to K₂SO₄ formation
- On-going modifications of the rig have been presented:
 - Water and SOx condenser
 - New measurements (Acid dew point, SO₃, heat transfer, % burnout)
- Kinetic Simulation Model has been developed with acceptable accordance with experimental results
- Simulation model including equipment for CO₂ purification predicts remarkable increase of the %CO₂ contents

Centre for Energy and Resource Technology

Process Conditions in Oxy-fuel Combustion

The Coal Research Forum 24th annual meeting

Nelia Jurado Hamid G Darabkhani John E Oakey

Cranfield University 10th April 2013 http://www.cranfield.ac.uk